首页 > 技术 > ML/机器学习

什么是机器学习分为哪三种

人阅读 2024-04-25 00:23:11

一直以来,机器学习都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来机器学习的相关介绍,详细内容请看下文。

一、什么是机器学习

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能核心,是使计算机具有智能的根本途径。

机器学习是研究怎样使用计算机模拟或实现人类学习活动的科学,是人工智能中最具智能特征,最前沿的研究领域之一。自20世纪80年代以来,机器学习作为实现人工智能的途径,在人工智能界引起了广泛的兴趣,特别是近十几年来,机器学习领域的研究工作发展很快,它已成为人工智能的重要课题之一。机器学习不仅在基于知识的系统中得到应用,而且在自然语言理解、非单调推理、机器视觉、模式识别等许多领域也得到了广泛应用。一个系统是否具有学习能力已成为是否具有“智能”的一个标志。机器学习的研究主要分为两类研究方向:第一类是传统机器学习的研究,该类研究主要是研究学习机制,注重探索模拟人的学习机制;第二类是大数据环境下机器学习的研究,该类研究主要是研究如何有效利用信息,注重从巨量数据中获取隐藏的、有效的、可理解的知识。

机器学习历经70年的曲折发展,以深度学习为代表借鉴人脑的多分层结构、神经元的连接交互信息的逐层分析处理机制,自适应、自学习的强大并行信息处理能力,在很多方面收获了突破性进展,其中最有代表性的是图像识别领域。

二、机器学习分为哪三种

1、监督学习(supervised learning)

监督学习是指通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力。

监督学习中只要输入样本集,机器就可以从中推演出制定目标变量的可能结果。如协同过滤推荐算法,通过对训练集进行监督学习,并对测试集进行预测,从而达到预测的目的。

2、无监督学习(unsupervised learning)

与监督学习相对应的是无监督学习,此时数据没有类别信息,也不会给定目标值。在无监督学习 中 , 将数据集合分成由类似的对象组成的多个类的过程被称为聚类;将寻找描述数据统计值的过程称之为密度估计。此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。

举个例子

比如,远古时期,我们的祖先打猎吃肉,他们本身之前是没有经验而言的,当有人用很粗的石头去割动物的皮的时候,发现很难把皮隔开,但是又有人用很薄的石头去割,发现比别人更加容易的隔开动物的毛皮,于是,第二天、第三天、……,他们就知道了需要寻找比较薄的石头片来割。这些就是无监督学习的思想,外界没有经验和训练数据样本提供给它们,完全靠自己摸索。

3、增强学习(reinforcement learning)

增强学习又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一。它是机器学习中一个非常活跃且有趣的领域,相比其他学习方法,增强学习更接近生物学习的本质,因此有望获得更高的智能。

增强学习关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。通过增强学习,一个智能体应该知道在什么状态下应该采取什么行为。增强学习是从环境状态到动作的映射的学习,我们把这个映射称为策略。

最后,小编诚心感谢大家的阅读。你们的每一次阅读,对小编来说都是莫大的鼓励和鼓舞。希望大家对机器学习已经具备了初步的认识,最后的最后,祝大家有个精彩的一天。

LOT物联网

iot产品 iot技术 iot应用 iot工程

Powered By LOT物联网  闽ICP备2024036174号-1

联系邮箱:support1012@126.com